物联传媒 旗下网站
登录 注册
RFID世界网 >  技术文章  >  其他  >  正文

基于复平面圆图的RFID振荡器设计方法研究

作者:黄玉兰
来源:电子技术应用
日期:2014-08-26 11:11:07
摘要:为降低RFID射频振荡器功耗并缩小其体积,提出了一种改善其性能的设计方法。采用晶体管和无源网络产生振荡,分析了单项参数的变化规律,给出了提高综合性能的方法以及射频振荡器的电路结构。仿真结果表明,晶体管稳定性对振荡器的设计有一定影响,配以正反馈可增加不稳定性,振荡器起振越快,功率输出越大,综合利用史密斯圆图和复平面上的稳定性边界可有效分配性能指标,为改善射频振荡器的性能开辟了一种新的途径。

  射频识别(RFID)是物联网感知环节识别物体、采集信息的重要手段[1-2]。近年物联网被世界各国作为战略性新兴产业加以培育和发展,RFID已经成为通信和电子领域的一个关键技术,引起了广泛关注。振荡器是RFID射频前端的关键模块,低功耗和小体积是RFID的两个重要性能指标[3-4]。但目前射频振荡器主要采用压控振荡器(VCO)[5],由于VCO同时采用晶体管和二极管两个有源器件,很难满足RFID对低复杂度的要求,需要针对RFID研究新的振荡器设计方法。

  本文提出了一种新的RFID产生振荡的设计方法,采用晶体管和无源网络设计振荡器。给出了RFID射频振荡器的电路结构,提出了提高射频振荡器综合性能的方法,对仿真曲线和仿真结果进行了分析,为RFID振荡器改善性能、适应物联网的需求开辟了一种新的途径。

  1 射频振荡器的工作原理

  振荡器是一种非线性电路,它将直流功率转换为射频功率[6]。振荡器的核心是一个能够在特定频率上实现正反馈的环路,当工作频率达到GHz量级时,电压和电流的波动特性将不能被忽略[7-9],需要讨论基于反射系数Γ和S参量的射频振荡器。双端口射频振荡器由晶体管、调谐网络和终端网络三部分组成。图1描述了射频振荡器的工作原理。

基于复平面圆图的RFID振荡器设计方法研究

  3 仿真结果

  3.1 振荡器电路

  振荡电路如图3所示。本设计振荡器的晶体管采用惠普公司的hp_AT41411,为增加其不稳定性配以正反馈,在基极串联了一个2 nH的电感。振荡器的振荡频率为2.25 GHz,系统的特性阻抗为50 Ω。在晶体管上添加调谐网络和终端网络,以确定振荡频率、最大输出功率和相位噪声等因素。

基于复平面圆图的RFID振荡器设计方法研究

  3.2 起振时间和频谱输出仿真

  对振荡器的起振时间进行瞬态仿真,对振荡频率和输出功率进行频谱输出仿真。观察振荡器输出的时域和频域信号,给出几组瞬态输出曲线和振荡频率仿真曲线,如图4所示。

基于复平面圆图的RFID振荡器设计方法研究

  振荡器的起振时间示于瞬态仿真图中,分3组曲线给出。图4(a)中标记m1和m2所在的曲线给出了振荡器第1种状态,标记m1和m2的瞬态电压输出均为381.6 mV;图4(b)中标记m4和m5所在的曲线给出了振荡器第2种状态,标记m4和m5的瞬态电压输出均为368.2 mV;图4(c)中标记m7和m8所在的曲线给出了振荡器第3种状态,标记m7和m8的瞬态电压输出均为354.3 mV。由图可以看出,3种状态振荡器均已起振,振荡器在第1种状态时起振的时间最短,在第3种状态时起振的时间最长。

  振荡器的振荡频率和输出功率示于频谱输出图中,分3组曲线给出。图4(a)中标记m3所在的曲线给出了振荡器第1种状态,图4(b)中标记m6所在的曲线给出了振荡器第2种状态,图4(c)中标记m9所在的曲线给出了振荡器第3种状态。由图可以看出,标记m3、m6和m9的振荡频率均为2.250 GHz,表明振荡频率相同时,振荡器在第一种状态时输出功率最大,在第3种状态时起输出功率最小。

  对图4的瞬态仿真图和频谱输出图进行综合分析后可以看出,振荡器在第1种状态时起振的时间最短,输出功率最大;在第3种状态时起振的时间最长,输出功率最小。

  本文提出采用晶体管与无源网络设计射频振荡器,与压控振荡器(VCO)相比具有有源器件少、功耗低、复杂度低的优点。基于复平面圆图设计RFID射频振荡器,提出了射频振荡器的电路结构,给出了射频振荡器在复平面上的图解方法。仿真结果表明,晶体管配以正反馈可增加不稳定性,调谐网络和终端网络决定振荡频率并确保振荡产生,在晶体管反射系数较大时振荡器开始起振,起振时间越短功率输出越大。本文提出的射频振荡器是非常实际的问题,可为RFID及其他射频振荡器的设计提供参考。