物联传媒 旗下网站
登录 注册
读写器
  • RFID读写器正常情况下一个时间点只能对磁场中的一张RFID卡进行读或写操作,但是实际应用中经常有当多张卡片同时进入读写器的射频场,读写器怎么处理呢?读写器需要选出特定的一张卡片进行读或写操作,这就是标签防碰撞。
  • 一套典型的RFID系统由电子标签、读写器和信息处理系统如图1所示。当带有射频识别标签(以下简称标签)的物品经过特定的信息读取装置(以下简称读写器)时,标签被读写器激活并通过无线电波开始将标签中携带的信息传送到读写器以及计算机系统完成信息的自动采集工作。电子标签可以如身份证大小,由人携带并当作信用卡使用,也可以像商品包装上的条型码似地贴附在商品等物品上。RFID计算机系统则根据需求承担相应的信息控制和处理工作。
  • 读写器的冲突是指由一个读写器检测到,并且由另一个读写器所引起的干扰。它主要有三种表现形式。
  • RFID 系统一般由电子标签、读写器、后台计算机组成。电子标签,又称为射频标签、应答器或数据载体;读写器又称为读头、通信器或读出装置(取决于电子标签是否可以无线改写数据)。电子标签与读写器之间,通过祸合元件实现射频信号的空间(无接触)祸合;在藕合通道内,根据时序关系,实现能量的传递和数据的交换,然后由后台计算机对读写器读取的数据进行存储以及管理分析等操作trio R FID系统基本组成。
  • RFID(Radio Frequency IdenTIty technology,无线射频识别技术)通过无线的方式,对存储于RFID标签中的数据进行自动采集,以获取被标识对象相关信息,一个简单的RFID数据采集系统由RFID读写器、天线(内置或外置)、RFID标签3部份组成。
  • 射频识别(Radio Frequency IdenTIficaTIon,RFID)技术是一种利用射频通信实现的非接触式自动识别技术,近年来随着大规模集成电路、网络通信、信息安全等技术的发展.RFID已进入商业化应用阶段,其应用规模也快速增长。一个RFID系统包括RFID读写器、RFID标签和软件3大组成部分。所采用的天线主要分为标签天线和读写器天线两种。标签天线是RFID系统中最易变的部分,并且其设计面临着小型化、低损耗和低成本的实际要求,所以优化设计标签天线在整个系统中占有重要地位。
  • RFID(Radio Frequency IdentificaTIon)是一种自动无线识别和数据获取技术,随着与传统网络的结合,RFID技术展现出巨大的市场应用潜力,被称为“物联网”和“第二代Internet”它利用无线射频方式在读写器和电子标签之间进行非接触双向数据传输,以达到目标识别和数据交换的目的。在国内外,RFID技术被广泛应用于工业自动化、商业自动化、交通运输控制管理、资产管理等众多领域。时至今日,RF ID技术的新应用仍然层出不穷。
  • RFID系统的基本工作原理是:标签进入读写器发射射频场后,将天线获得的感应电流经升压电路后作为芯片的电源,同时将带信息的感应电流通过射频前端电路变为数字信号送入逻辑控制电路进行处理,需要回复的信息则从标签存储器发出,经逻辑控制电路送回射频前端电路,最后通过天线发回读写器。
  • RFID系统是以电磁信号为媒介进行数据传输的自动识别技术,与传统条形码技术相比,其优势在于识别对象与读取设备之间通信穿透性强、距离较远、数据传输量大和适应环境能力强等,因此在物流跟踪、仓储管理和物品定位等方面得到广泛应用。RFID主要由读写器和标签两部分组成,标签一般贴附在物品上,接收读写器信号并将ID信息发回读写器。目前,RFID标签仍无法取代条形码的一个重要因素是成本仍然较高,而在整个标签成本中芯片占有较大比重,因此近年有关无芯片标签的研究和应用得到了广泛关注。
  • RFID是RadioFrequencyIdenTIficaTIon的缩写,即射频识别。射频识别(RFID)技术是从20世纪80年代兴起并逐渐走向成熟的一项自动识别技术,它利用射频方式进行非接触双向通信,以达到目标识别与数据交换的目的。RFID是一种非接触式的自动识别技术,它通过射频信号自动识别目标对象并获取相关数据,识别工作无须人工干预。作为条形码的无线版本,RFID技术具有条形码所不具备的防水、防磁、耐高温、使用寿命长、读取距离大、标签上数据可以加密、存储数据容量更大、存储信息更改自如等优点,已经被世界公认为本世纪十大重要技术之一,在生产、零售、物流、交通等各个行业等各个行业有着广阔的应用前景。我国的第2代身份证即采用了RFID技术,世界上最大的零售商沃尔玛也要求其最大的100个供应商从2005年1月1日起开始采用RFID技术。
  • RFID无线射频识别技术,相信很多人都对他相当了解,简单来说它就是电子标签,是一种利用无线电射频信号耦合传输的特性,在读写器和标签之间进行非接触双向数据传输以达到目标识别和数据交换目的的技术。它的诞生给我们的生活带来了莫得便利,正被广泛用于采购分配、商业贸易、生产制造、物流、防盗以及军事用途上。
  • RFID读写器正常情况下一个时间点只能对磁场中的一张RFID卡进行读或写操作,但是实际应用中经常有当多张卡片同时进入读写器的射频场,读写器怎么处理呢?读写器需要选出特定的一张卡片进行读或写操作,这就是标签防碰撞。防碰撞机制是RFID技术中特有的问题。在接触式IC卡的操作中是不存在冲突的,因为接触式智能卡的读写器有一个专门的卡座,而且一个卡座只能插一张卡片,不存在读写器同时面对两张以上卡片的问题。
  • 目前,大多数RFID系统为低频和高频系统,但超高频频段的RFID系统具有操作距离远,通信速度快,成本低,尺寸小等优点,更适合未来物流、供应链领域的应用。尽管目前,RFID超高频技术的发展已比较成熟,也已经有了一些标准,标签的价格也有所下降;但RFID超高频读写器却有变得更大,更复杂和更昂贵的趋势,其消耗能量将更多,制造元件达数百个之多。然而,这里的设计采用高度集成的R1000,可以解决上述问题,既可降低芯片设计中的复杂性和生产成本,又能使制造商制造出体积更小,更有创新性的读写器,从而开拓新的RFID应用领域。
  • 随着物联网在智能电网、智能交通、智能物流和生态监视等国民经济方方面面的大量应用,UHF频段的RFID技术更是发展迅速,它是一种非接触式的自动识别技术,通过射频信号可以自动识别目标对象、获取相关数据,识别工作无须人工干预,适用于各类恶劣环境。RFID系统由标签、读写器和天线三部分构成,其中RFID读写器最为关键。
  • ADF9010还包括高性能的整数N分频PLL,内置全集成的低噪声压控振荡器(VCO),本振(LO)的相位噪声在1MHz偏移处为–140dBc/Hz。这个本振输出信号还可以用来驱动外部RF解调器,如ADI公司的ADL5382。发射路径包括一个全集成差分Tx直接正交上变频器。
  • 被测天线是一款工作在RFID全频段(860 MHz-960 MHz)的阵列天线,可安装于吊顶、安检门、珠宝柜内部,适用于各种通道场景。
  • 射频识别(RFID)技术近年来得到了广泛的重视和应用。UHF频段的RFID 系统,由于其传输距离远、传输速率高,受到了更多地关注。典型的RFID系统由RFID 阅读器和标签两部分组成,RFID无源标签依靠RFID 阅读器发射的电磁信号供电,并通过反射调制电磁信号与阅读器通信。因此,RFID读写器天线设计的优劣对其系统工作性能有关键的影响。
  • 将粒子群算法( Particle Swarm Optimization,PSO)优化 BP( Back Propagation)网络的学习算法应用于射频定位。搭建实验平台,采集样本数据 ;在此基础上,进行训练学习,求得 RFID 读写器与标签之间“信号强度—坐标” 的映射关系 ;并对其进行测试,探讨粒子群神经网络算法在 RFID 定位中应用的优势。
  • 近年来,射频识别(RFID)技术取得了广泛的商业应用,特别是我国政府于2009年开始出台相关政策,提出要大力发展物联网技术与产业,而物联网的核心技术之一即为RFID。在RFID系统中,天线作为能量的转换器,在发送和接收信息的过程中实现了电磁能量的相互转换。因此,天线的性能好坏直接影响整个系统的性能。
  • 电子标签天线的设计目标是传输最大的能量进出标签芯片,这需要仔细设计天线和自由空间的匹配,以及天线与标签芯片的匹配。当工作频率增加到微波波段,天线与电子标签芯片之间的匹配问题变得更加严峻。
  • 无线射频识别(RFID)读写器的读写距离取决于诸多因素,如RFID读写器的传输功率、读写器的天线增益、读写器IC的灵敏度、读写器的总体天线效率、周围物体(尤其是金属物体)及来自附近的RFID读写器或者类似无线电话的其他外部发射器的射频(RF)干扰。
  • 在智能物流管理系统中,可以组建对应的区域特殊功能,比如能够将录入系统具体分为三类,在入库产品、在库产品和出库产品中各配置相应的手持读写器,在数据采集完毕,又能将智能物流管理系统的职能分为入库管理、库存管理、商品管理、出库管理、检测分析等模块,通过这些模块共同组建智能物流管理系统。
  • RFID技术是利用无线射频方式进行非接触双向通信,自动识别目标对象并获取相关信息数据的无线通信技术。它可实现对运动目标的快速识别和多目标识别,识 别的距离可达几十厘米至几十米;根据读写的方式,可以输入数千字节的自定义信息到电子标签,间接管理附带有电子标签的产品的信息;RFID技术具有非接触 性,识别工作无须人工干预,具有极高的保密性;RFID电子标签不同于磁卡或IC卡,无暴露的触点,且不易损坏,使用寿命长,可工作于各种恶劣环境。
  • 本文主要对双频微带天线的理论知识进行介绍,并设计了一款谐振频率915MHz和2.45GHz附近的双频RFID读写器微带天线,同时,利用HFSS对天线进行仿真、优化。最后加工实物利用微波暗室对天线的性能进行测试。
  • 该文介绍了利用RFID技术建立铁包跟踪系统,实现了对铁包实时状态的及时跟踪,提高铁包的使用率和企业生产效能。详细给出了铁包跟踪系统的总体结构以及数据采集处理的设计方案,同时,描述了射频识别读写器与PLC控制器通信的设计方法。
  • 本文采用Impinj最新的R2000进行UHF RFID设计,可支持多协议兼容,标签处理速度高达每秒400多张,此超高频射频识别系统尤其适用于物流、供应链领域。实验表明,以此为核心的读写器防碰撞性能好、高级DRM算法支持每秒处理400个标签。这些特性减小了设备的开发复杂度,缩短了设备的研发周期,提高了系统性能,加快了设备的上市时间。
  • 本手持机主要支持IS014443A协议的射频卡的读写,此射频卡目前已经被广泛使用。利用此设计方案,开发的物流手持射频卡读写器,具有携带方便,成本低,软件修改方便,可使用场合多的特点,随着物联网的发展,其应用前景一定非常广阔。
  • 基于MSP430F149单片机的手持式RFID读写器低功耗设计策略及器件选择方案,结合RFID读写器的工作情况提出了一种采用调节MSP430F149工作时钟频率和对系统工作模式进行智能管理来降低读写器系统功耗的方法。
  • 为了提高大规模RFID系统的认证效率,通过分析现有RFID系统的认证效率和安全性,提出了一套基于Hash函数的改进协议。向RFID读写器加入过滤规则,能够有效过滤恶意和无效的认证请求;对标签的访问计数器值的分层化、更新和重置,可以有效提高后端数据库检索数据的命中率。通过分析和测试,该协议能够有效抵御假冒攻击、重传攻击等不安全问题,有效提高RFID认证的效率,降低认证服务器计算负荷。
  • 本文简要论述了其他防伪技术的不足,而RFID技术在克服这些缺点的同时,又帮助企业建立了产品追踪追溯体系,使得产品的安全问题有望得到很大的改观。在射频标签和读写器的认证方式上,与PIG技术结合在RFID中间件部分实现,使得企业不必束缚于专用的读写器。
  • 为满足读写器天线工作于840~845 MHz和920~925 MHz两个频段的要求,如果直接采用微带天线设计,则存在着天线的频带比较窄,不能满足两个频段要求的缺点。一种新的设计思路是设计一款双频带微带天线,使其两个频带分别覆盖840~845 MHz和920~925 MHz两个频段。这样做的好处是既满足了双频段的要求,又在一定程度上过滤了两频段间的干扰和噪声进入读写器的接收系统。
  • 随着物联网技术的普及与发展,RFID技术在各行各业的应用越来越广泛。RFID技术具有无接触识别、存储信息容量大、方便快捷读取信息等优点。在航空企业生产过程中,针对于量具使用的全生命周期管理,充分发挥RFID技术的优势,可大大节约企业生产的量具成本支出,提升企业生产过程中量具使用的规范化管理水平,进而提升企业的生产经营效率。