物联传媒 旗下网站
登录 注册
磁场
  • 在电子学理论中,电流流过导体,导体周围会形成磁场;交变电流通过导体,导体周围会形成交变的电磁场,称为电磁波。
  • 标签进入磁场后,接收阅读器发出的射频信号,凭借感应电流所获得的能量发送出存储在芯片中的产品信息(Passive Tag,无源标签或被动标签),或者主动发送某一频率的信号(Active Tag,有源标签或主动标签);解读器读取信息并解码后,送至中央信息系统进行有关数据处理。
  • 电磁波是能量的一种,凡是高于绝对零度的物体,都会释出电磁波。电与磁可说是一体两面,电流会产生磁场,变动的磁场则会产生电流。变化的电场和变化的磁场构成了一个不可分离的统一的场。
  • RFID读写器正常情况下一个时间点只能对磁场中的一张RFID卡进行读或写操作,但是实际应用中经常有当多张卡片同时进入读写器的射频场,读写器怎么处理呢?读写器需要选出特定的一张卡片进行读或写操作,这就是标签防碰撞。
  • RFlD是射频识别技术(Radio Frequency denti-fieation)的英文缩写,又称电子标签,是一项利用射频信号通过空间耦合(交变磁场或电磁场)实现无接触信息传递并通过所传递的信息达到识别目的的技术。RFID的最早应用可追溯到第二次世界大战中用于区分联军和纳粹飞机的“敌我辨识”系统。与目前广泛使用的自动识别技术如条码、磁卡、 IC卡等相比。
  • RFID读写器正常情况下一个时间点只能对磁场中的一张RFID卡进行读或写操作,但是实际应用中经常有当多张卡片同时进入读写器的射频场,读写器怎么处理呢?读写器需要选出特定的一张卡片进行读或写操作,这就是标签防碰撞。
  • RFID无线射频识别技术(Radio Frequency IdentificaTIon,RFID)的应用由来已久,最早可追溯到第二次世界大战时,英国空军飞机使用的敌我飞机识别系统。最近RFID无线射频识别技术被广泛应用于物品管理、车辆定位以及井下人员定位等。该技术是一种非接触的自动识别技术,利用无线射频信号通过空间耦合(交变磁场或电磁场)实现无接触信息传递并通过所传递的信息达到自动识别目的。
  • RFID无线射频识别技术(Radio Frequency IdentificaTIon,RFID)的应用由来已久,最早可追溯到第二次世界大战时,英国空军飞机使用的敌我飞机识别系统。最近RFID无线射频识别技术被广泛应用于物品管理、车辆定位以及井下人员定位等。该技术是一种非接触的自动识别技术,利用无线射频信号通过空间耦合(交变磁场或电磁场)实现无接触信息传递并通过所传递的信息达到自动识别目的。
  • 13.56MHZ天线铁氧体片/膜一种高温烧结的铁氧材料。在NFC(Near Field Communication)支付手机等手持式设备中,电子标签上,主要作用是降低金属材料对信号磁场的吸收,同时铁氧体膜本身是一种高温烧结的铁氧体材料,通过增加磁场强度,有效增加感应距离。
  • RFID读写器正常情况下一个时间点只能对磁场中的一张RFID卡进行读或写操作,但是实际应用中经常有当多张卡片同时进入读写器的射频场,读写器怎么处理呢?读写器需要选出特定的一张卡片进行读或写操作,这就是标签防碰撞。防碰撞机制是RFID技术中特有的问题。在接触式IC卡的操作中是不存在冲突的,因为接触式智能卡的读写器有一个专门的卡座,而且一个卡座只能插一张卡片,不存在读写器同时面对两张以上卡片的问题。
  • AMR传感器节点基本电路如图所示。电源部分由TI公司的APL5312-33起到LDU功能,电源输入电压为4.2 V,输出为3.3 V。磁场强度检测使用MMC2122MG AMR传感器,该传感器具有体积小、寿命长、灵敏度高、能耗低和稳定性等特点,可广泛用于电子指南针、GPS导航、位置感知、车辆检测和磁力测定。
  • 射频识别技术(RFID),是20世纪80年代发展起来的一种新兴自动识别技术,射频识别技术是一项利用射频信号通过空间耦合(交变磁场或电磁场)实现无接触信息传递并通过所传递的信息达到识别目的的技术。
  • 采用有限元的方法对一选定天线的场强进行仿真分析,并结合实际测试来研究和论证的。工作频率为13.56 MHz。基于亥姆霍兹线圈磁场叠加的原理,考虑在工作天线附近增加一开路线圈,区别是线圈与工作天线不直接相连。在电磁场环境下,附加的开路线圈感应出相应的电流和磁场进而对工作天线产生影响,并且改善工作天线的阻抗,通过调整附加线圈与工作天线之间的距离来增强所需位置的场强。此方法分析了附加线圈与工作天线之间不同的位置、距离以及附加线圈的大小和通断等情况,给出了这些情况下工作天线的电流和磁场的变化。通过仿真和实测数据表明此方法的有效性。
  • RFID(Radio Frequency Identification)是一种非接触式的自动识别技术,它利用射频信号通过空间耦合(交变磁场或电磁场)实现无接触信息传递并通过所传递的信息达到识别的目的,识别工作无须人工干预,具有数据存储量大、可读写、非接触、识别距离远、识别速度快、保密性好、穿透性强、寿命长、环境适应性好以及能同时识别多标签等优点,并且可工作于各种恶劣环境。
  • 文章介绍了RFID技术的分类、组成及基本原理,完成了基于T89C2051的RFID技术的实现方案,系统的介绍由低电压、高性能的T89C 2051控制的无源应答器和外置单电源供电的阅读器组成。而无源应答器所需的工作能量是从阅读器发出的射频波束经空间高频交变磁场耦合而获取,再经整流、滤波、存储后来提供应答器所需要的工作电压。当应答器进入发射天线覆盖区域时,应答器以耦合方式获得能量;将自身编码等信息通过发送天线发送出去,接收天线接收到信号,经阅读器对接收的信号进行滤波放大后,由单片机控制发光二极管显示。
  • 对带有RFID标签的新Port进行了磁场相互作用下磁共振有关的发热伪影综合实验,确定了与1.5和3-T下磁共振系统有关条件下RFID标签的性能是否受到影响。基于实验结果,该植入体适合[或使用当前磁共振标签术语——磁共振条件下]让病人接受1.5-T/64-MHz 和 3-T/128-MHz下的磁共振成像检查。
  • 射频识别是一种非接触式的自动识别技术,他通过射频信号自动识别目标对象并获取相关数据,识别工作无需人工干预,可工作于各种恶劣环境。射频识别系统由阅读器和应答器(标签)构成。当他工作时,阅读器通过天线发送出一定频率的射频信号,当标签进入磁场时产生感应电流从而获得能量,发送出自身编码等信息被读取器读取并解码后送至电脑主机进行有关处理[1]。高频功率放大器是阅读器的关键部件,主要功能是对标签信号的返回信号进行功率放大。
  • 本文采用集聚识别技术,对于大批量单品标签识别采集数据时,降低或减少盲点和误读问题,同时克服空腔效应和多路径效应,快速而且全部识别高度密集的射频电子标签,实现集聚电子标签识别率100%的识读。
  • 阅读器在一定区域内发射电磁波。电子标签内有一个谐振电路,当标签进入磁场时,就能产生感应电流获取能量、时钟和指令,并将有用数据以反向散射调制的方式发射出去。阅读器接收到此标签的数据并进行解码后,送入中央信息系统进行数据处理。这样,阅读器通过天线可实现无接触式的读取并识别电子标签中所保存的数据,达到自动识别物体的目的。
  • 射频识别技术(RFID)是一项利用射频信号通过空间耦合(交变磁场或电磁场)实现无线方式对电子数据载体进行识别的新兴自动识别技术。针对低功耗和高效性,设计了一种以Nuvoton Nano110低功耗MCU为核心的125KHz的RFID控制阈系统。该系统采用分立元件搭建了成本极低的ATA5567射频卡读写电路,构建了段码式LCD显示和控制阀门的电机驱动模块。通过实践检验了系统的稳定性,可将其用于成本敏感的预付费卡表(水表、燃气表和热量表等)。
  • RFID 是射频识别技术(Radio Frequency Identification)的英文缩写,射频识别技术是一种非接触式的自动识别技术,它使用射频电磁波通过空间耦合(交变磁场或电磁场)在阅读器和要进行识别、分类和跟踪的移动物品(物品上附着有RFID 标签)之间实现无接触信息传递并通过所传递的信息达到识别目的的技术。RFID 是一种自动识别和数据捕获技术,可以提供无人看管的自动监视与报告作业。
  • 摘要:文章介绍了RFID技术的分类、组成及基本原理,完成了基于T89C2051的RFID技术的实现方案,系统的介绍由低电压、高性能的T89C 2051控制的无源应答器和外置单电源供电的阅读器组成。而无源应答器所需的工作能量是从阅读器发出的射频波束经空间高频交变磁场耦合而获取,再经整流、滤波、存储后来提供应答器所需要的工作电压。当应答器进入发射天线覆盖区域时,应答器以耦合方式获得能量;将自身编码等信息通过发送天线发送出去,接收天线接收到信号,经阅读器对接收的信号进行滤波放大后,由单片机控制发光二极管显示。
  • 无线射频技术 RFID(radio frequency identification)是20 世纪90 年代兴起的一种非接触的自动识别技术,利用其射频信号空间传播的特性——通过空间耦合(交变磁场或电磁场)实现无接触信息传递,并通过所传递的信息来实现对被识别物体的自动识别。识别过程不需要物理接触,不需要人工管理即可完成标签信息的写入和读取。采用RFID 技术,可以一次性实现对多个目标以及运动目标的识别。此外,电子标签是可读写的,能储存大量信息,安全性保密性强,并且不怕外部灰尘、污渍等,具有较强的环境适应能力。
  • NFC是一种新型的标准化近距离无线通讯技术,利用磁场感应原理,使电子设备在近距离内达成互联互通,从而实现可靠的数据传输。未来,使用者只要透过简单的接触或接近动作,即可进行直觉且安全的非接触式交易并读取资讯。
  • 蜂窝发射模块对手机内的任何元件来说都将产生最大的辐射功率,从而可能诱发EMI和RFI.类似这样的问题可以采用RF屏蔽技术来降低与EMI及射频干扰(RFI)相关的辐射,并可将对外部磁场的敏感度降至最低。那么,什么样的屏蔽设计方法具有最佳效率呢?这个由三部分组成的系列文章围绕当今蜂窝发射模块来讨论有效的RF屏蔽方法。
  • 本文主要通过实际工作中对于各种RFID读写系统的对比,总结研究RFID读写器天线设计中比较实用的方法。
  • 为了实时监测高压电力电缆温度状态,针对其高压、强磁场工作环境提出基于分布式光纤传感器的高压电力电缆温度在线监测系统设计方案。该方案采用DSP的快速累加,并利用Stokes信号解调Anti-Stokes信号,极大提高信噪比。此外,还介绍该系统在电力电缆中的实例应用,阐述其在电力系统中的实用价值。
  • RFID射频识别技术的工作原理是当电子标签进入读取器的磁场区域后,接收读取器发出的信号,凭借感应电流所获得的能量发送存储在芯片中的产品信息,或者主动发送某一频率的信号,读取器读取信息并译码后,送至中央信息系统进行相关处理,但在实际应用中需要其他的软硬件支持。
  • 本文设计了一款用于UHF 频段的近场RFID 椭圆分段环天线。通过利用分段耦合结构,在其周长大于工作波长时,天线的表面电流依然保持同向;通过采用椭圆形结构,可以调整其磁场的范围。天线印刷在FR-4 介质板上并且安置在250mm×180mm×50mm 的金属腔体内。在860-871MHz 时,这款读写器天线能达到16.1cm 的读写距离以及8cm 的读写宽度,适合用于UHF 频段的RFID 读写器。
  • 交流传动在高性能场合的应用始于矢量控制概念的引入,包括直接磁场定向与间接磁场定向控制。尽管这一概念早在60年代就已出现,并由Siemens 的Blaschke博士于1972年正式提出[1],但是真正应用还是在微电子技术发展的二十年后。矢量控制从基本原理上讲能够获得优异的动静态特性,但是对电机参数的敏感性却成为实际应用中必须解决的问题。驱动器通过启动前的自整定以及运行过程中的在线整定,适应电机参数变化,保持矢量控制的动静态性能,这些复杂的自适应控制算法都必须通过强大的信号处理器才能完成。
  • 目的:研究探讨RFID技术在实践中的运用.方法:利用RFID技术,选用合适的射频模块(RFM-001),单片机(89C2051),天线(SA110),EEPROM(AT24C16)等,将其有机组合;通过单片机控制射频模块,利用天线发出适合射频卡的共振磁场,有效地与射频卡实现数据通信.结果:所设计的射频卡系统稳定可靠,实现了射频卡的有效识别和卡内数额的增加与减少.结论:本设计灵活多变,可用于多种场合,多种情况;RFID技术在社会发展中的重要作用日益显现.
  • 天线作为射频识别系统设计的关键器件,直接影响着系统的性能。U2270B是一种典型的发射频率为125 kHz的非接触性IC卡射频基站芯片。文章在介绍射频识别系统基本原理的基础上,说明天线设计的重要性;重点阐述U2270B基站芯片天线设计的关键部分和具体步骤,并通过实例作进一步说明。