物联传媒 旗下网站
登录 注册
超高频UHF
  • 众所周知,RFID手持终端分为低频(LF),高频(HF)和超高频(UHF) 三种频段。
  • RFID常用工作频率包括低频125kHz、134.2kHz.高频13.56MHz,超高频860~930MHz,微波2.45GHz,5.8GHz等。因为低频125kHz、134.2kHz,高频13.56MHz系统以线圈作为天线,采用电感祸合的方式,其工作距离较近,一般不超过1.2m,带宽在欧洲及其他地区限制为几千赫兹。但超高频(860~93Uh1Hz)和微波(2.45GHz,5.8GHz)可以提供更远的工作距离,更高的数据速率,更小的天线尺寸,因此成为RFID的热点研究领域。
  • 超高频(UHF)频段的射频识别(RFID)近场读写器天线(NFRA)由于其在单品识别方面应用的潜力[1],对环境的不敏感性和比HF 天线更高的读写速度,正引起多方面的关注。UHF 频段的 NFRA 通常采用带有平衡端口的电大环结构来实现。
  • 1 引 言   射频识别(RFID)技术作为一种新兴的自动识别技术,近年来在国内外得到了迅速发展。目前,我国开发的RFID产品普遍基于中低频,如二代身份证、票证管理等。在超高频段我国自主开发的产品较少,难以适应巨大的市场需求以及激烈的国际竞争。超高频(UHF)标签是指工作频率在860~960 MHz的RFID标签,具有可读写距离长、阅读速度快、作用范围广等优点,可广泛应用于物流管理、仓储、门禁等领域。为适应市场需求,本文以EPC C1G2协议为主,ISO/IEC18000.6为辅,设计了一种应用于超高频标签的数字电路。   2 UHF RFID标签的工作原理   射频识别系统通常由读写器(Reader)和射频标签(RFID Tag)构成。附着在待识别物体上的射频标签内存有约定格式的电子数据,作为待识别物品的标识性信息。读写器可无接触地读出标签中所存的电子数据或者将信息写入标签,从而实现对各类物体的自动识别和管理。读写器与射频标签按照约定的通信协议采用先进的射频技术互相通信,其基本通讯过程如下。   (1)读写器作用范围内的标签接收读写器发送的载波能量,上电复位;   (2)标签接收读写器发送的命令并进行操作;   (3)读写器发出选择和盘存命令对标签进行识别,选定单个标签进行通讯,其余标签暂时处于休眠状态;   (4)被识别的标签执行读写器发送的访问命令,并通过反向散射调制方式向读写器发送数据信息,进入睡眠状态,此后不再对读写器应答;   (5)读写器对余下标签继续搜索,重复(3)、(4)分别唤醒单个标签进行读取,直至识别出所有标签。   3 UHF RFID标签的结构及系统规格   UHF RFID标签的示意图如图1所示,由模拟和数字两部分组成。模拟电路主要包括天线、唤醒电路、时钟产生电路、包络检波电路、解调电路和反射调制电路;数字部分主要实现EPC通信协议,识别读写器发出的命令并执行,如实现多标签阅读时的防冲突方法、执行读写器发送的读写命令、实现读写器和标签的通讯过程以及对输出数据进行编码等。协议规定的标签系统规格如表1所示。      图1 UHF RFID标签的示意图   表1 UHF RFID标签系统规格      4 标签数字电路的设计方法   4.1 电路的整体系统设计   经过对协议内容的深入研究,本文采用Top.down的设计方法,首先对电路功能进行详细描述,按照功能对整个系统进行模块划分;再用VHDL硬件描述语言进行RTL代码设计并进行功能仿真;功能验证正确后,采用EDA工具,
  • 针对超高频(UHF)读卡器在实际应用中容易出现盲区而无法顺利读取标签的情况,提出了应用于UHF读写器的数字跳频技术方案。通过上位机软件发送数字跳频参数给FPGA,FPGA根据得到的参数对集成锁相环芯片Si4133、功率放大器RF2173及外设进行配置,得到数字跳频的栽波信号。测试结果证明,该方案应用于UHF读卡器项目中,能顺利读到标签。
  • 针对超高频(UHF)RFID标签群快速运动通过读卡器的情景进行了研究,分析了ISO/IEC 180006 Type C类防冲突算法的具体实现过程。结果表明,当UHF RFID标签群在快速运动通过读卡器范围时,会产生新旧标签竞争现象。部分标签一段时间内不被识别,然后离开读卡器识别范围,导致“漏读”,造成系统不可靠。在Type C类防冲突算法的前提下,提出了两种解决方案。
  • 在射频识别(RFID)领域中,超高频(UHF)射频标签一直是一项空白。本文阐述了一种基于MSP430F122单片机和芯片nRF401组成的433MHz射频标签的设计,并给出了系统的硬件原理图和软件设计方案。从成本和功耗等方面综合考虑得出一种可投产的实用型标签。
  • 针对超高频(UHF)读卡器在实际应用中容易出现盲区而无法顺利读取标签的情况,提出了应用于UHF读写器的数字跳频技术方案。通过上位机软件发送数字跳频参数给FPGA,FPGA根据得到的参数对集成锁相环芯片Si4133、功率放大器RF2173及外设进行配置,得到数字跳频的栽波信号。测试结果证明,该方案应用于UHF读卡器项目中,能顺利读到标签。
  • RFID技术在集装箱领域的应用使准确控制、追踪集装箱的who,where,when信息成为了可能。集装箱用电子标签多用超高频(UHF)段。这个频段的穿透能力强,并且在动态读取时显示出了优越性。相对于工业自动化等领域的应用,电子标签在集装箱物流运输中的应用具有很强的特殊性。
  • 为了实现超高频(UHF)读写设备的远程实时交互功能,本文基于以太网网卡芯片ENC28J60和超高频射频识别芯片AS3990,利用LPC2138作为主控制器,实现了超高频网络读写器的软硬件方案设计。在读写器上移植实时操作系统μC/OSII和轻量级IP协议LwIP,使读写器可以连入互联网,实现了读写参数远程配置和数据实时交互,满足了快速发展的RFID产业对UHF读写器多样性需求。
  • 电子标签芯片是无线射频识别(RFID)技术的核心,其模拟电路的设计十分关键。基于ISO/IEC 18000-6C标准,以设计出符合标准的标签芯片为设计目标,超高频(UHF)无源电子标签芯片模拟电路被提出。它分为电源产生电路、调制解调电路以及上电复位模块等模块。设计结果表明,设计的电路具有很高的整流效率,满足了设计需求。
  • 本系统将RFID技术应用于对衣物个体的识别与管理。基于超高频(UHF) RFID技术,实现洗衣行业快速收衣、分拣、全自动盘点、取衣的高效工作平台,大大提高工作效率、降低出错率。
  • 文章中首先介绍了超高频(UHF)与高频(HF)电子标签在图书馆应用中的对比,然后针对现象对发展中遇到的问题进行了解说。
  • 本文提出了一种符合ISO/IEC18000-6B标准的高性能低功耗无源超高频(UHF)射频识别(RFID)应答器芯片的射频电路。该射频电路除天线外无外接元器件,通过肖特基二极管整流器从射频电磁场接收能量。
  • 针对大型奶牛场需要对数百头奶牛进行识别管理,而传统的人工识别方法存在费时费力和准确率不高的问题,提出将无线射频识别技术(RFID)应用于奶牛场的现代化管理当中,以提高工作效率的方法。采用ARM7系列芯片LPC2214作为系统的主控制芯片,以μ CLinux作为操作系统内核,构建系统的软硬件平台,包括无线超高频(UHF)模块S1871和LCM12864显示模块及电源报警等部分。采用C语言编程,将识别到的标签信息通过串El传送给上位机,从数据库中调出相关信息,以便施加命令。其中,上位机中采用SQL Sever2000作为后台数据库,VC++为前台开发工具,开发客户机/服务器类型的应用程序。整个识别系统符合最新国际标准ISO 1 8000—6C和EPC C1 Gen2,可以实现奶牛的远距离无线自动识别,并且提高了识别的准确率及效率。
  • 随着以Gen2为代表的超高频技术正式成为ISO 18000-6C标准,RFID技术在托盘和货箱上的应用日趋成熟,超高频(UHF)RFID引起了全球的广泛关注。
  • 围绕高频与超高频RFID技术之间的争论声从来就没有停歇过。不过,RFID技术正在与时俱进,日新月异。所以,需要人们用新视角新思维去看待和分析高频与超高频RFID之争。
  • XRA00是意法半导体公司推出的一个甚高频(UHF)RFID存储器芯片,可用于设计感应式射频识别系统。文中介绍了XRA00射频识别芯片的基本工作原理,给出了它作为电子标签在消费品零售和行李搬运领域的典型应用。
  • 本文介绍了在低频、高频和超高频三个频段做金属表面可行方案的分析。 现阶段对金属件标识的方法有三种,一种是在高频和低频用到的隔离金属与标签的方法,成本比较高;另一种就是合理设计标签,使标签天线离开金属表面适当距离;第三种就是附着标识,包括挂牌子、标识承载被标识物的非金属托盘或者容器等办法。可能将来随着制作工艺的进步,可以把标签的天线和金属做在一起,把被标识金属导体作为天线的一部分从而轻易地解决导体敏感问题;
  • 与超高频(UHF)技术相比,高频技术(HF)要成熟得多。1995年高频技术就已经商业化了,国际标准化组织/国际电工委员会也于1999年制定了ISO/IEC 15693标准,对高频射频识别技术的实施进行了规范。