物联传媒 旗下网站
登录 注册
采集
  • MES是根据生产计划的要求,对生产过程进行必要的实时数据采集和记录的管理系统,它可以有效地进行质量跟踪和追溯,保证产品严格按质量要求被加工制造。
  • 定位采集目前在很多领域都是非常重视的一项技术。
  • RFID智能定位技术是一种区域性的定位采集,就是利用2.4G和低频125K的RFID技术,对人和物的自动识别和区域性定位,实现对人和物的管理。
  • 一直以来,智慧制造都相当重视生产信息的透明化与即时串联,在基础设施布建中缺少不了作为数据采集基础的超高频RFID读写器。
  • 单片射频器件大大方便了一定范围内无线通信领域的应用,采用合适的微控制器和天线并结合此收发器件即可构成完整的无线通信链路。它们可以集成在一块很小的电路板上,应用于无线数字音频、数字视频数据传输系统,无线遥控和遥测系统,无线数据采集系统,无线网络以及无线安全防范系统等众多领域。
  • RFID是一种非接触式自动识别技术,RFID技术可以快速读写、远距离采集,识别精准,所以在智能识别领域受到广泛青睐。随着物联网技术的高速发展,智能化、自动化离不开数据的采集传输,RFID技术作为联网核心技术成为重要数据采集来源。RFID区域人员定位技术为何备受青睐。
  • RFID还为零售业提供了先进便捷的数据采集方式,便利的顾客交易,高效的运营方式,快速而有洞察力的决策手段等等条码技术无法取代的好处。
  • 能量采集有着像是可以“不劳而获”(something for nothing)的魅力。但现实是,这方面的开发工作通常必须付出大量的劳动力和成本。尽管如此,当电池或交流电(AC)无法供电的情况下,能量采集技术仍能提供电源以解决棘手的问题。
  • 采用RFID技术可以更加自动、实时、可靠地采取生产进度信息,使得生产过程和进度更加可视化,同时减少对于人工信息采集的依赖,降低成本,减少差错。在上述更加自动准确的信息采集的基础上,商用车生产商可以进一步提高自身的生产管理精益化水平,赢得竞争优势。
  • RFID读写器可以通过无线的方式,对存储于RFID标签中的数据进行自动采集,以获取被标识对象相关信息。随着技术的发展,RFID逐渐 开始被应用到离散制造行业中。RFID在离散制造业中的应用将改变离散制造企业的生产经营方式。
  • 在生产和装配的过程中,能够通过传感器或RFID自动进行数据采集,并通过电子看板显示实时的生产状态。
  • 通过对车辆进行RFID电子标识绑定信息,在城市道路布设读写基站,实现实时准确的采集车辆信息,对车辆身份的精准识别、车辆信息的动态采集、交通信息的海量采集,有效提升车辆管理智能化水平,满足城市交通管理应用需求。
  • 由于制造行业生产规模和人力成本急剧增加,制造行业正在逐步进行转型升级,打造工厂智能化最基础的是要实现制造信息的无人自动采集与处理,RFID(射频识别技术)的出现让智能化又概率成为现实,成为制造业重要的升级方向和发展趋势。
  • 本文设计了一种基于RFID的智能交通控制,采用RFID技术检测交叉路口附近的车辆,智能交通控制信号机根据采集到的车辆信息,选择合适的 路口控制模式自适应地控制车辆通行时间,从而保证车辆通行质量。
  • 数字电源开关负责整个有源模块供电的开和关,未接收到激活信号时,数字电源处于关闭状态,整个有源模块处于待机状态,能耗极小;被无源模块激活后,数字电源转为开放状态,有源模块上电工作,采集人体的脉搏信息,同标识信息一起通过RF发射前端发往读写器。
  • 智能环卫系统在系统架构上同样采取部署前端感知采集设备+智能管理平台+数据中心的模式, 前端感知设备包括各类传感器、RFID电子标签、监控摄像头等,用于环卫数据的采集和上传。
  • RFID即射频识别,俗称电子标签,是一种非接触式的自动识别技术,通过射频信号自动识别目标对象并获取相关数据,识别工作无需人工干预,可工作于各种恶劣环境。同时,RFID技术可识别高速运动物体并可同时识别多个标签,操作快捷方便。RFID技术应用于集成平台业务开发,作为种新型的交通信息采集方式,比传统交通信息采集手段更精确。近年来,随着RFID技术标准的建立和推行,RFID应用与交通领域,用于作为交通信息采集方式已逐渐得到推。
  • 许多企业在数据采集的环节中,几乎靠人为的纸张记录,费时费力,易出差错。PDA智能终端具有实时采集、自动存储、即时显示、即时反馈、自动处理、自动传输等功能,为现场数据的真实性、有效性、实时性、可用性提供了保证。
  • 汽车电子标识系统就是RFID在城市交通的典型应用,通过在车辆前挡风玻璃上粘贴汽车电子标识,在城市道路布设读写基站,实时准确的采集车辆信息,从而突破原有交通信息采集技术的瓶颈,实现车辆身份的精准识别、车辆信息的动态采集、交通信息的海量采集,有效提升车辆管理智能化水平,满足城市交通管理应用需求。
  • 当前,电网企业普遍应用资产安全管理评估决策系统开展结果性指标评价。系统主要从PMS系统和SAP系统抽取数据,但缺少现场实物数据的信息,而通过RFID中间件系统及现场采集设备对实物标识进行数据采集,通过接口及时将实物信息反馈到资产安全管理评估决策系统,实现真正意义上的账、卡、物相符的纵向闭环,为资产安全管理理提供更加精准的资产营运状态数据。
  • 日常生活中的电子设备越来越多了,它们都需要某种形式的电源才能维持正常工作。幸运的是,我们周围存在很多种能量形式,既可以把风能、光能、物体运动动能转换成电能,甚至从高频无线电信号的传输中也可以收集部分能量。
  • 企业门禁考勤管理系统是企业为了实现员工上下班考勤刷卡、数据采集及记录、信息查询和考勤统计;实现薪资结算过程的自动化,完善人事管理现代化。传统的考勤管理系统多数采用主动式刷卡,即需要员工拿着工作卡主动在读卡器前刷卡,这种传统的考勤管理系统存在以下几方面的弊端。
  • RFID技术在市场上被广泛应用。在国外,射频标签已被广泛应用于工业自动化、商业自动化、交通运输、物流等众多领域。其特有的高准确率和快捷性大大降低了企业的物流成本,提高了企业的市场竞争力和服务效率。本文设计了完整的智能车库控制系统,车库模型总体采用“回”字设计方案,此方案在模型车库中已经通过验证和实际的信息采集,能够满足实际运用。硬件部分以STC公司生产的STC 11F32XE单片机作为控制核心,对系统硬件进行了总体设计,并对硬件系统中各个功能模块的具体设计进行了以下详细介绍。
  • 一套典型的RFID系统由电子标签、读写器和信息处理系统如图1所示。当带有射频识别标签(以下简称标签)的物品经过特定的信息读取装置(以下简称读写器)时,标签被读写器激活并通过无线电波开始将标签中携带的信息传送到读写器以及计算机系统完成信息的自动采集工作。电子标签可以如身份证大小,由人携带并当作信用卡使用,也可以像商品包装上的条型码似地贴附在商品等物品上。RFID计算机系统则根据需求承担相应的信息控制和处理工作。
  • RFID(Radio Frequency IdenTIty technology,无线射频识别技术)通过无线的方式,对存储于RFID标签中的数据进行自动采集,以获取被标识对象相关信息,一个简单的RFID数据采集系统由RFID读写器、天线(内置或外置)、RFID标签3部份组成。
  • 在信息化高速发展的今天,数字化信息的应用越来越成熟,各行业通过其优化产业结构、抢占市场。目前得到广泛应用的车载终端,大多仅利用了摄像头的录像功能,不能及时将监控信息及时传回监控中心,并非真正的实时远程监控终端,不能满足自动化作业需求。随着当前物流行业的迅速发展,将物联网技术引入物流行业管理,将对提升物流企业的效益起到事半功倍的作用。文中介绍的基于RFID的物联网车载系统是运行于车载终端中的智能系统,安装在运输车辆后,通过RFID技术以及其他动态信息采集技术,无需人工操作,自动与控制中心进行通信,实现对车辆的全程掌控。
  • 溯源系统的数据在动物食品生产过程中的多个环节逐渐生成,并在相应环节中添加到溯源系统中。大量多类型追溯信息的存储和管理仅仅通过标识标签是很难实现的,需要采用标签和数据中心结合的方式才能满足追溯系统中信息管理的复杂需求。通过标签技术对动物性食品加工环节中每个产品进行唯一标识,如图2所示。在每个加工环节都建立相应的信息管理平台,该平台采集加工环节中每个产品的信息并汇总到食品安全数据中心。在整个环节中都有政府专门机构进行监管。消费者可以根据产品的标签从数据中心查询到该产品所历经的所有生产环节及其关键信息,任何环节的生产厂家都可以通过系统对产品向上追溯和向下跟踪,政府可以通过数据中心的信息建立自动的食品安全监测平台。
  • 在传统的汽车总装线中每一条总装线往往只装配同一型号的汽车,因此装配工人装配效率较高并且也不容易出错,但现在随着汽车制造业的不断发展,传统的制造方式和技术已经满足不了现代汽车的制造要求。现代汽车的多样化和个性化要求一条汽车总装线能够装配不同型号的汽车,因此就需要对汽车总装线装配数据采集工作进行严格的掌控,而传统的数据采集工作主要是依靠手工采集模式或者条码采集模式,这种方式存在着装配数据采集不及时、采集效率低、采集数据误差大等缺点,为了解决这个问题,本文提出要了将RFID技术运用到汽车总装线上来,以实现汽车装配过程中对于装配信息的及时、准确采集,将汽车装配过程信息化。
  • 射频识别(RFID)技术是一种利用电磁发射或电磁耦合实现无接触信息传递,进而自动识别和获取目标对象信息数据的技术。作为一种稳定、可靠、快速采集数据并对数据进行加工的新兴技术,RFID得到了广泛应用并突显其强大的实用价值。但RFID技术在安全隐私问题上面临着诸多挑战。为此,本文在已有的RFID协议基础上,通过分析其执行过程及优缺点,提出一种新的基于Hash的RFID双向认证协议,并进行了安全性分析和比较。
  • 将粒子群算法( Particle Swarm Optimization,PSO)优化 BP( Back Propagation)网络的学习算法应用于射频定位。搭建实验平台,采集样本数据 ;在此基础上,进行训练学习,求得 RFID 读写器与标签之间“信号强度—坐标” 的映射关系 ;并对其进行测试,探讨粒子群神经网络算法在 RFID 定位中应用的优势。
  • 射频识别(RFID)是物联网感知环节识别物体、采集信息的重要手段[1-2]。近年物联网被世界各国作为战略性新兴产业加以培育和发展,RFID已经成为通信和电子领域的一个关键技术,引起了广泛关注。振荡器是RFID射频前端的关键模块,低功耗和小体积是RFID的两个重要性能指标[3-4]。但目前射频振荡器主要采用压控振荡器(VCO)[5],由于VCO同时采用晶体管和二极管两个有源器件,很难满足RFID对低复杂度的要求,需要针对RFID研究新的振荡器设计方法。
  • 在智能物流管理系统中,可以组建对应的区域特殊功能,比如能够将录入系统具体分为三类,在入库产品、在库产品和出库产品中各配置相应的手持读写器,在数据采集完毕,又能将智能物流管理系统的职能分为入库管理、库存管理、商品管理、出库管理、检测分析等模块,通过这些模块共同组建智能物流管理系统。