物联传媒 旗下网站
登录 注册
雷达
  • 本文设计了一个新的射频电路设计性实验项目———可用于无人机高度测量的毫米波雷达微带天线的设计与实现。
  • 同轴转接头用于传输射频信号,其传输频率范围很宽,可达 50GHZ 或者更高,主要用于雷达、通信、数据传输以及航空航天设备。
  • 汽车雷达、5G 蜂窝、物联网等射频 (RF) 应用中,电子系统对射频源的使用量与日俱增。所有这些射频源都需要设法监测和控制射频功率水平,同时又不能造成传输线和负载的损耗。
  • 20世纪40年代初期,雷达的改进和应用催生了无线射频识别(RFID)技术。经历了漫长的探索阶段,目前,RFID已经在公共安全、生产制造、物流管理等领域起到了举足轻重的作用。
  • 现代通信技术、雷达技术、电子测量以及一些光电应用领域都要求高精度、高稳定度、高分辨率的射频正弦波信号。有别于传统的模拟射频振荡器方式,直接数字频率合成器DDS(Direct Digital Synthesizer)有着显着的优点:频率稳定度高、频率精度高、易于控制。
  • 本文采用I型谐振单元来构造所设计的标签。相比于其他结构的谐振单元,其主要有两方面的优势。首先,无论激励信号是同极化,还是交叉极化的电磁波,I型谐振单元的后向散射信号中都不含有二次谐波,然而U型谐振单元在交叉极化的信号源激励下,会产生二次谐波[8]。其次,I型谐振单元在受到正交极化的平面波激励时,只会对一个极化方向的电磁波有所回应,而不会对另一个极化方向的电磁波有所回应,相应的原理图分别如图1和图2所示,其中V(vertical)和H(horizontal)分别代表谐振单元的放置方向和平面波极化方向是竖直和水平的,RCS是雷达散射界面(Radar Cross Section)。
  • 1940-1950年:雷达的改进和应用催生了射频识别技术;1950-1960年:早期的识别技术探索阶段,主要处于实验研究;1960-1970年:射频识别的理论得到了发展,开始了一些应用尝试;1970-1980年:射频识别技术与产品研发处于一个大发展时期,出现了一些最早的射频识别应用;1980-1990年:射频识别技术及产品进人商业应用阶段;1990-2000年:射频识别技术开始向标准化迈进,其产品得到广泛采用;2000年后,标准化问题13趋被重视,射频识别产品种类更加丰富,射频识别技术的理论更加丰富和完善,单芯片电子标签,多电子标签识读等产品正在成为现实并走向应用。
  • 一般而言,RFID系统由5个组件构成,包括传送器、接收器、微处理器、天线,标签。传送器、接收器和微处理器通常都被封装在一起,又统称为阅读器(Reader),所以工业界经常将RFID系统分为阅读器,天线和标签三大组件,这三大组件一般都可由不同的生产商生产。RFID源于雷达技术,所以其工作原理和雷达极为相似。首先阅读器通过天线发出电子信号,标签接收到信号后发射内部存储的标识信息,阅读器再通过天线接收并识别标签发回的信息,最后阅读器再将识别结果发送给主机。体系架构如图所示。
  • 射频识别技术(RFID,即Radio Frequency IdenTIficaTIon)是一种基于雷达技术发展而来的识别技术。文章论述了如何研制了RFID读卡器射频电路的相关信息,包括零中频解调技术、载波电路、信号调制电路及射频功率放大电路,并给出射频电路模块结构的方案,这对简化传统的射频电路,推广射频识别(RFID)技术在工业自动化和交通控制等众多领域有重要意义。
  • 20世纪40年代初期,雷达的改进和应用催生了无线射频识别(RFID)技术。经历了漫长的探索阶段,目前,RFID已经在公共安全、生产制造、物流管理等领域起到了举足轻重的作用。
  • 以基于STM32和RMU900+的物联网工程读写器为基础平台,将雨量传感、温度传感和雷达探测等模块引入到RFID系统中,并制定可独立调节和全网集中调节的射频模块发射功率自适应控制策略,在确保可靠识读的同时,降低了系统功耗,延长了读写器的工作寿命。该设计可为有高可靠性要求的同类应用系统提供参考。
  • 本文以大型车辆的辅助倒车为背景,根据大型车辆在倒车过程中由于车身较长、盲区较大的特点,设计了一种能够方便部署、基于RFID等无线射频信号传输的智能倒车辅助系统。通过对超声波测距原理和文中系统设计方案的介绍,利用温度补偿方式来消除温度对超声波测距精度所产生的影响,并通过无线射频技术来减少雷达主机和显示器之间的诸多不便。
  • 射频(Radio Frequency) 专指具有一定波长可用于无线电通信的电磁波。射频识别技术 (Radio Frequency Identification)是20 世纪90 年代开始兴起的一种非接触的自动识别技术, 它是利用射频信号和空间耦合(电感或电磁耦合)或雷达反射的传输特性,实现对被识别物 体的自动识别。但是,就目前来看, RFID 的发展仍然存在较多瓶颈,数据读取率不高就是其中主要瓶颈之一。
  • 目标雷达散射截面(RCS),在复平面可以表示为复频域的函数。根据奇点(SEM)展开(留数)方法,计算对目标物体的散射奇点(留数),进行射频识别(RFID),是射频识别的新思路。通过FEKO软件,对蝶形无芯标签结构进行仿真得出该结构散射场。仿真的结果显示该结构具有开槽数量多、极点分布规律、数据容量大、易于实现等优点。
  • RFID(电子标签、射频识别)技术的工作原理是"低频段基于变压器耦合模型(初级与次级之间的能量传递及信号传递),在高频段基于雷达探测目标的空间耦合模型(雷达发射电磁波信号碰到目标后携带目标信息返回雷达接收机)。1948年哈里斯托克曼发表的"利用反射功率的通信"奠定了射频识别技术的理论基础"。今天我们就来谈谈RFID技术如何在汽车防盗系统中大展拳脚。
  • (RFID) 技术采用辐射和反射RF功率来识别和跟踪各种目标。典型的RFID系统由一个阅读器和一个转发器(或标签)组成。一个RFID阅读器包含一个RF发送器、一个或多个天线以及一个RF接收器。RFID标签就是一个带天线的唯一标识IC。 与雷达系统相似,阅读器和标签之间的通信也是通过反向散射反射来实现的 (在860MHz~960MHz的UHF频段内)。本设计要点描述了一款高性能 RFID接收器。
  • 随着雷达应用需求的不断扩展,作为关键部件的天线,尤其是主流的有源相控阵天线的发展日新月异。为适应现代雷达的高设计指标要求,新的解决方案、设计理论、材料以及微波器件正不断涌现,天线微波领域面临着新的技术革命。
  • 随着现代信息技术和超大规模集成电路的发展,RFID技术在服务领域、货物销售与后勤分配、商业部门、生产企业和材料流通领域得到了越来越广泛的应用。射频识别技术的基本原理是利用射频信号和空间耦合(电感耦合或电磁耦合)或雷达反射的传输特性,实现对被识别物体的自动识别。
  • 超宽带(UWB)技术起源于20世纪50年代末,此前主要作为军事技术在雷达探测和定位等应用领域中使用。美国FCC(联邦通信委员会)于2002年2月准许该技术进入民用领域,用户不必进行申请即可使用,FCC已将3.1GHz~10.6GHz频带向UWB通信开放,IEEE也专门制定了IEEE 802.15.3系列标准来规范UWB技术的应用。
  • RFID直接继承了雷达的概念,并在此基础上得到了进一步的发展。一套完整的RFID系统, 是由阅读器(Reader)与电子标签(Tag)也就是所谓的应答器(Transponder)及应用软件系统三个部份所组成。
  • 射频识别技术(RFID,即Radio Frequency Identification)是一种基于雷达技术发展而来的识别技术。文章论述了如何研制了RFID读卡器射频电路的相关信息,包括零中频解调技术、载波电路、信号调制电路及射频功率放大电路,并给出射频电路模块结构的方案,这对简化传统的射频电路,推广射频识别(RFID)技术在工业自动化和交通控制等众多领域有重要意义。
  • 随着人们对汽车驾驶过程当中安全性、舒适性要求的不断提高,汽车雷达被广泛的应用在汽车的自适应巡航系统,防碰撞系统以及驾驶支援系统中。其中,毫米波雷达因探测精度高、硬件体积小和不受恶劣天气影响等优点而被广泛采用。
  • 本文重点介绍RFID技术工作原理和在实际应用中的优点,并分析该技术在工业、商业及其他行业中的应用。
  • 目前,有几家公司正在开发防伪技术,如Prooftag, eProvenance, CertiLogo, Kodak和Applied DNA Sciences公司已提供了安全系统,允许酒厂在高端产品上做标记,并进行跟踪。很快酒瓶上就出现了RFID(雷达技术读写器)标签、加密密码以及隐形墨水。虽然很多技术还处于实验极端,但酒厂已对此产生了极大兴趣。
  • 倒车雷达和TPMS里采用主动的超声波传感器和RFID(射频识别技术)传感器。
  • 网络化的RFID属于信息网络系统范畴,是实现信息管理、信息流通的功能模块。将RFID技术与互联网、通信等技术相结合,构造全球范围内的网络化的RFID系统,是EPCglobal组织的工作宗旨。本文介绍了RFID技术以及网络化RFID技术的系统构造、工作原理和流程,并给出将RFID技术结合移动通信技术产生的网络化的RFID系统。
  • 频谱分析仪是微波测量中必不可少的测量仪器之一,它能对信号的谐波分量、寄生、交调、噪声边带等进行很直观的测量和分析,因此,广泛应用于微波通信网络、雷达、电子对抗、空间技术、卫星地面站、EMC测试等领域。
  • 目前,交通管理数据采集系统一般使用“电子眼”摄像技术、线圈地下埋置技术、雷达定位系统技术(GPS)和微波检测技术(MTD)等几种方式。不过,有知名专家预测,无线射频识别交通监管技术将成为实时交通信息采集未来发展趋势。